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ANALYSIS OF CONVECTIVE DIFFUSION PROBLEM 

BOUNDARY ELEMENT METHOD 
WITH FIRST-ORDER CHEMICAL REACTION BY 

NAOTAKA OKAMOTO 

Department of Applied Chemistry, Okayama University of Science, Ridai-cho 1-1, Okayama 700, Japan 

SUMMARY 

A boundary element method is presented for a steady state convective diffusion problem with a first-order 
chemical reaction. In the chemical reaction system the usual conservation law for calculation of the diagonal 
components of the matrix H cannot be satisfied. Thus in the boundary element formulation the emphasis is 
laid on how to compute these diagonal components. The main aim of this paper is to present the method of 
numerical quadrature to obtain the principal values, using the splitting technique to treat the singular 
integration. 
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INTRODUCTION 

It is important to analyse the chemical reaction system in convective diffusion problems such as the 
red tide in the ocean, waste water treatment, biochemical engineering, etc. However, a study on the 
boundary element analysis of the chemical reaction system has not been presented except for a few 
references.' In this paper the boundary element technique of the steady state convective diffusion 
problem associated with the first-order chemical reaction is presented by an extension of the 
method reported in the author's previous work.' 

Boundary element methods for the convective diffusion problem may be classified into two 
schemes; the first is a boundary-type in which the fundamental solution is derived from 
the convective diffusion operator, and the second is a domain-type scheme4 in which the 
fundamental solution is derived from the diffusion operator without the convection. Recently, it 
has been found that the boundary element solution using the boundary-type scheme is stable at 
large Peclet  number.'^^ It is possible that the chemical reaction can be treated by both schemes in a 
similar way to the convection. In this study, the first scheme is used. For this purpose, a new 
fundamental solution to the convective diffusion operator including a first-order chemical reaction 
must be introduced. Using the derived solution, a boundary element method is formulated for the 
convective diffusion problem including a chemical reaction term. The boundary integral equation 
is discretized using the constant boundary elements. 

It is well known that the evaluation of the principal values must be carried out ~areful ly .~ The 
main purpose of this paper is to present the method of numerical quadrature to obtain the principal 
values by using the splitting method, in which an element is divided into two parts in order to 
reduce the difficulty of singular integration. It is suggested that the diagonal components Hii  and 
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Gii should be calculated separately over both sides of singular points on the boundary integral. The 
numerical results of this method give much better accuracy than the conventional method, and the 
computational time by the present method is considerably shorter. The two methods-i.e., with 
and without using the splitting technique-are compared with each other in terms of their 
efficiency and the numerical accuracy. 

BOUNDARY INTEGRAL EQUATION 

Let SZ be an s-dimensional (s = 1,2 or 3) domain enclosed by the boundary r and let C, (mole m- ') 
be the concentration of reactant A. The steady state convective diffusion equation with chemical 
reaction in the form 

L[cA] = 0 (1) 

is considered, where the linear operator I,[.], which includes the chemical reaction and the 
convection terms, is defined by 

L[cA] = - D v2 CA + v'(Vc,) + k C A .  (2) 
Here D(m2 s-') is the constant diffusivity or the dispersion coefficient, V is the s-dimensional 
gradient operator, v = { oi} (i = 1,. . . , s) (m s -  ') is the constant velocity vector and k (  > 0) ( s -  ') is 
the reaction rate constant. 

Also L*[.] denotes the adjoint operator to I,[.], defined by 

L* [C*] = - D V2C* - V.(vC*) + kC*. (3) 
The Green's second identity over SZ can be expressed as 

f n ( c f L [ c ~ ] -  C,L*[Cf])dR= { (Dvcf )c , -  cf(DvC,)  + VCXCA}'ndT, (4) 
.lr 

where n denotes the outer normal unit vector on the boundary of R and Cf is an adjoint potential 
field to C,. Suppose that we know the fundamental solution C*(P,Q) satisfying 

L*[C*] = 6(P - Q), ( 5 )  

where P is an arbitrary source point, Q is a reference point and 6 ( P  - Q) is the Dirac delta function. 
Taking C* instead of CX in equation (4) and substituting equation (1) into equation (4), we readily 
obtained the boundary integral equation 

r r 

where d/dn = 
Q'. Here, N A ,  is defined by 

in which 

ni(d/dxi) and a(Q) is the weight depending on the solid angle of 52 at the point 

(7) N A ,  = -D(dcA(P)/dn) + vnCA(P), 

S 

v , = v * n =  1 villi.  
i =  1 

FUNDAMENTAL SOLUTION 

The fundamental solution C*(P, Q) satisfying equation (5) is considered, which is the Green's 
function in an infinite domain. It is prepared for the transform defined by 
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S 

(v'r)= 1 ui(xi-ti), (10) 

- V 2 0 *  + p 2 0 *  = (l/D)exp [(v-r)/2D]d(P - Q )  in Rs, (1 1) 

i =  1 

in which P = { x i }  and Q = { t i }  (i = 1,. . . , s). Applying equation (9) to equation (5),  we have 

where 

p 2  = ( I V ~ I / ~ D ) ~  + k/D,  
i =  1 

with IuiI the absolute value of the velocity. From the right-hand side of equation (l l) ,  the 
fundamental solution of equation ( 1  1) is equivalent to that of 

- V 2 0  + p 2 m  = 6(P - Q) in R", (13) 
which is known as the Yukawa potential.6 By use of its inverse transformation, the s-dimensional 
fundamental solutions C:(P, Q)  (s  = 1,2,3) are obtained as 

C:(P,  Q )  = ( 1 / 2 ~ ) e x ~  - (v*r)/2D - I~l.lrl1 ( 144 
C f ( P ,  Q )  = (i/47cD)exp [ - (v.r)/2D]Hb1)(ilpCL(.(r() 

Here, Hi')(.) denotes the Hankel function of the first kind of order zero, i = J( - 1) and Kb2)(.) 
denotes the modified Bessel function of the second kind of order zero. 

BOUNDARY ELEMENT DISCRETIZATION 

For the discretization ofequation (6), assume that the whole boundary r is divided into M constant 
boundary elements rj(j = 1,2,. . . , M).  The boundary node Q is taken at the centre of T j .  Then the 
approximate functions CA(P)  and N A n ( P )  on the boundary r are respectively expressed as 

M 

j =  1 
cA(P) = 1 C A ( P j ) F j ( P )  (164 

and 
M 

where Fj(P)  is the piecewise constant function defined by 

F j ( P ) = l  for Perj and Fj(P)=O for P $ r j .  (17) 

(18) 

The substitution of equations (16) into equation (6) yields the matrix equation 

CHI {CA(Pj) }r  + CG1 { N . 4 n ( p j ) } T  = { O } ,  
where the (i, j) components of [HI and [GI are respectively calculated as 
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and 

C*(P, Q ) F j ( P )  d r ,  

in which hij  denotes the Kronecker delta. 

CALCULATIONS OF Hii AND Gii 

The chemical component is conserved when the chemical reaction does not occur ( k  = 0). The 
zth diagonal component H i i  of the matrix H can be calculated' as 

M 

Hji = - 1 H i j  ( j  # i). 
j =  1 

On the other hand, the chemical component is not conserved when the chemical reaction 
occurs ( k  # 0). In this case it follows that 

from the conservation law with the chemical reaction (VN = kC,). Then the flux term [GI { N A n }  
in equation (18) is never zero, even if a non-zero uniform concentration is applied on the whole 
boundary r. Therefore [HI always becomes singular in the non-reaction system and non-singular 
in the reaction system; then 

The ith diagonal component Hii cannot be calculated from equation (20) .  It must be calculated 
from equation (19a): 

H i i  = u(Q)  + H i i .  (23) 

a(Q) = 8 i / 2 ~ ,  (24) 

The first term a ( Q )  is defined by' 

where 8i denotes the solid angle of R at the point Q. Because the isoplethic concentration curve 
and Ti are not orthogonal to each other (dC*/dn # 0), the second term is expressed as 

- 
H . .  = (251 

NUMERICAL MODEL 

In order to examine the validity of the present method, a simple two-dimensional model is dealt 
with. To show the character of the solution, the following non-dimensional parameters are used: 
the non-dimensional concentration of reactant @ = CA/CA,, the non-dimensional co-ordinates 
X = x , / L  and Y = x,/L, the non-dimensional reaction rate constant K = kL2/D and the Peclet 
number Pe = u 1  / D ,  in which L is the characteristic length (the length of the duct or the thickness of 
the boundary film) and C,, is the characteristic concentration (or the maximum concentration at 
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o = o  . .  

h r 
i= 
v 

5 

0 
.rl 

II 
= c o n s t a n t  

0 

o = o  

Figure 1. Two-dimensional chemical reaction model 

the inlet). The solution is characterized by K and Pe. Figure 1 illustrates the numerical model, 
where the boundary r is discretized into 40 constant boundary elements ( M  = 40, h = 1/10) and v is 
X-directed. The boundary conditions are prescribed as CD = sin(n:Y) on X = 0 and CD = 0 on the 
remaining parts. 

NUMERICAL QUADRATURE AND NUMERICAL RESULTS 

The calculation of the diagonal components Hi, and G,, is treated in this section. The numerical 
quadrature of fiii and Gii should be carried out carefully, since C* is weak singular kernel and 
dC*/dn is the singular kernel. fiii and Gii are calculated by the Gaussian quadrature rules. In this 
paper, the following two quadrature methods are used. The first one is conventional: 

- 

Hi, = D (dC*(P, Q)/dn)Fi(P) d r ,  
- 112 

The second one is the improved method: 
- 
Hi, = D (dC*(P, Q)/dn)Fi(P) dT + D (dC*(P, Q)/dn)F,(P) d r ,  (274 SII KO 

i i  I-' C*(P,Q)Fi(P)dr+ C*(P,Q)Fi(P)dr, (27b) jr0 G.. = 
- 1/2 

where 1 denotes the boundary element size. 
Table I compares the results obtained from equations (26) and (27). The exact solution of Hi ,  

cannot be obtained explicitly. Therefore the component Hii  has also been computed using 
equation (20). Although equation (20) may not be valid for problems with a chemical reaction in 
the exact sense, by the author's computation almost the same values have been computed by 
equation (20) using Gaussian nodal points 8 and 10 respectively. In the case of equation (26a), the 
value of Hi,  is evaluated more accurately by the 40-point Gaussian quadrature rule than by the 16- 
point one. On the other hand, in the case of equation (27a), the value ofH,, is calculated much more 
accurately by the 8-point Gaussian quadrature rule on both sides of the singular point separately 
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(i.e., (8 + 8)-point Gaussian quadrature rule) than by the previous technique. Moreover, using the 
(20 + 20)-point Gaussian quadrature rule, the computed results obtained are in good agreement 
with the exact solution. The computed H i i  by the (8 + 8)-point Gaussian quadrature rule is much 
better than that by the 40-point Gaussian quadrature rule of equation (26a). For the calculation 
of Gii,  equation (27b) is better than equation (26b), as is shown in Table 11. 

Figures 2 and 3 show the comparisons of the relative errors, E = [(@ - @elracl)/@'exacl] x loo%, 
with the variation of the Peclet number at the centre of Q(X = Y = 05)  using the (8 + 8)-point and 
(20 + 20)-point Gaussian quadratures respectively. As shown in Figure 2, the relative error is small 
for low Peclet number, but becomes larger as the Peclet number increases. On the other hand 
(Figure 3), using the (20 + 20)-point Gaussian quadrature, it is seen that the relative error 
distribution depends only slightly on the Peclet number. The resdts of Figures 2 and 3 are 

Table 2. Diagonal components of matrix G 

Gii Eq. (26b) Gii Eq. (27b) 

Gaussian 
quadrature 

Number 
of rows 

(Pe = 0.00001, K = 0) 
1-10 

11-20 
2 1-30 
31-40 

(Pe = 10, K = 0) 
1-10 

11-20 
21-30 
3 1-40 

(Pe=20, K=O) 
1-10 

11-20 
21-30 
31-40 

(Pe = 50, K = 0) 
1-10 

11-20 
21-30 
31-40 

(Pe = 80, K = 0) 
1-10 

11-20 
21-30 
31-40 

(Pe= 100, K =0) 
1-10 

11-20 
21-30 
31-40 

16 points 40 points 8 + 8 points 20 + 20 points 

1.62516 
1.62516 
1.62516 
1.62516 

0.247044 
0.245099 
0.247044 
0.245099 

0-1 83955 
0.178817 
0.183955 
0 1788 17 

0.114032 
0.0999064 
0.1 14032 
0.0999064 

0.0870196 
0.0670958 
0.08 70 197 
0.06709 5 8 

0.0764080 
0.0540759 
0.076408 1 
0.05407 59 

1.62908 
1.62908 
1.62908 
1.62908 

0.250958 
0.249014 
0.250958 
0.2490 14 

0.1 87867 
0.182731 
0.187867 
0.18273 1 

0.1 17929 
0.1038 1 5 
0.f 17929 
0.1038 15 

0.0908902 
0.0709959 
0.0908907 
0.0709959 

0.0802544 
0.0579678 
0.0802548 
0-0579678 

1.63089 
1.63089 
1-63089 
1.63089 

0.252771 
0.250827 
0.252771 
0.250827 

0.1 89680 
0.184544 
0.189680 
0 184544 

0.119741 
0.105628 
0.1 19741 
0.105628 

0.0927000 
0.0728074 
0.0927000 
0.0728074 

0.0820622 
0.0597785 
0.0820621 
0.0597786 

1.63 162 
1.63162 
1-63162 
1-63 162 

0.253497 
0.251553 
0.253497 
0.251 553 

0- 1 90405 
0.185270 
0.190405 
0.185270 

0.120467 
0.106354 
0- 120467 
0.106354 

0.093426 1 
0.0735332 
0.0934260 
0.073 5332 

0-0827883 
0.0605044 
00827882 
0.0605044 
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entirely different. Therefore care must be taken in dealing with the computation of Hii and Gji. 
Finally, the components H i j  and Gij(i  # j )  are evaluated numerically using the 8-point Gaussian 
quadrature and H i i  and Gii are evaluated with the (20 + 20)-point Gaussian quadrature. Figure 4 
shows the boundary element solution along Y = 0.5 where the Peclet number Pe = 20. Figure 5 
shows the relative errors. It is seen that the boundary element solution is stable in space and is 
in good agreement with the exact solution, and that the relative error in modulus is less than 
0.32% except in the neighbourhood of the inlet X = 0. 
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Figure 4. The concentration distribution along Y = 0 5  

CONCLUSIONS 

The boundary element method has been presented for a convective diffusion problem associated 
with a first-order chemical reaction. Moreover, the Gaussian quadrature of both the diagonal 
components Ifii and Gii , which includes singular integration, has been investigated precisely. The 
characteristics of the method are summarized as follows: 

(1) A new fundamental solution to the convective diffusion equation including a chemical 
reaction term is presented. 
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Using the fundamental solution obtained, an integral equation is formulated for the 
chemical reaction system. The integral equation is formed by the pure boundary integrals. 
The ith diagonal component Hii of the matrix H cannot be calculated from the usual sum of 
the off-diagonal components Hi,, because the conservation of reactant is not satisfied under 
reaction. 
The accuracy of the solution depends strongly on a small error which arises from the 
Gaussian quadrature rule used for obtaining the values of matrix components. 
It is suggested that the diagonal components Hii and Gii should be calculated separately 
over both sides of singular points on the boundary integral. 
The boundary element solution is stable for both large Peclet number and large reaction 
rate constant. 
The boundary element solution using the constant element of size 0.1 is sufficiently 
accurate, since the relative error in modulus is less than 0.32% for Pe < 100 and K < 500. 
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